(本小题满分12分)某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗、原料都不能超过12千克。求该公司怎样安排生产计划,可使公司获得最大利润,并求出最大利润.
(本小题满分12分)已知正方形的边长为2,分别是边的中点.(1)在正方形内部随机取一点,求满足的概率;(2)从这八个点中,随机选取两个点,记这两个点之间的距离的平方为,求随机变量的分布列与数学期望.
(本小题满分12分)已知函数.(1)求的最小正周期和单调增区间;(2)设,若求的大小.
已知函数f(x)满足2f(x+2)=f(x),当x∈(0,2)时,f(x)=lnx+ax (),当x∈(―4,―2)时,f(x)的最大值为―4.(1)求x∈(0,2)时,f(x)的解析式;(2)是否存在实数b使得不等式对于恒成立?若存在,求出实数b的取值集合;若不存在,请说明理由.
已知数列{an}满足a1=1,a2=3,且, . (1)证明:数列{a2k}()为等比数列; (2)求数列{an}的通项公式; (3)设 (λ为非零整数).试确定λ的值,使得对任意都有成立.
已知函数.(1)当x∈[0,4]时,求f(x)的最大值和最小值;(2)若x∈[0,4],使≥0成立,求实数a的取值范围.