如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦值;(III)求点E到平面ACD的距离。
如果二次函数y=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,试求m的取值范围。
一个小服装厂生产某种风衣,月销售量x(件)与售价P(元/件)之间的关系为P=160-2x,生产x件的成本R=500+30x元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?
已知实数t满足关系式 (a>0且a≠1) (1)令t=ax,求y=f(x)的表达式; (2)若x∈(0,2时,y有最小值8,求a和x的值。
用声母b,c和韵母a,o,e,i,u可组成多少个不同的读音?
已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明: BD∥平面EFGH;(3)设M是EG和FH的交点,求证:对空间任一点O,有.