一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.
设数列 a n 的前 n 项和为 S n 已知 a 1 = 1 , S n + 1 = 4 a n + 2
(I)设 b n = a n + 1 - 2 a n ,证明数列 b n 是等比数列. (II)求数列 a n 的通项公式.
已知函数 f ( x ) = sin 2 ω x + 3 sin ω x sin ( ω x + π 2 ) ( ω > 0 ) 的最小正周期为 π . (1)求 ω 的值;
(2)求函数 f ( x ) 在区间 [ 0 , 2 3 π ] 上的取值范围.
已知抛物线上任意一点到焦点F的距离比到轴的距离大1,(1)求抛物线C的方程;(2)若过焦点F的直线交抛物线于M,N两点,M在第一象限,且,求直线MN的方程;(3)过点的直线交抛物线于P、Q两点,设点P关于轴的对称点为R,求证:直线RQ必过定点.
如图,在中,,斜边,可通过以直线AO为轴旋转得到,且二面角是直二面角,动点D在斜边AB上,(1)求证:平面平面;(2)当D为AB的中点时,求异面直线AO与CD所成角的正切值;(3)求CD与平面所成最大值角的正切值.
已知函数在处取得极值,其中为常数,(1)试确定的值;(2)讨论函数的单调区间;