如图,已知椭圆C的中心在原点O,焦点在轴上,长轴长是短轴长的2倍,且经过点M. 平行于OM的直线在轴上的截距为并交椭圆C于A、B两个不同点.(1)求椭圆C的标准方程;(2)求m的取值范围; (3)求证:直线MA、MB与x轴始终围成一个等腰三角形.
已知点P在椭圆上,焦点为F1、F2,且∠F1PF2=30°,求△F1PF2的面积.
设,求证:成立的充要条件是xy≥0.
已知.若“”和“”同为假命题,求x值.
求下列标准方程 (1)椭圆的两个焦点坐标分别为(0,2),(0,-2),且点P(,)在椭圆上. (2)椭圆长轴是短轴的3倍,且过点A(4,0). (3)双曲线经过点(-3,2),且一条渐近线为y=x. (4)双曲线离心率为,且过点(4,).
在复数范围内解方程(i为虚数单位)