从编号为1,2,3,4的四个不同小球中取三个不同的小球放入编号为1,2,3的三个不同盒子,每个盒子放一球,则1号球不放1号盒子且3号球不放3号盒子的放法总数为
已知是实数,有下列四个命题:(1)(2)(3)(4)其中真命题的个数为 ( )
已知某运动员每次投篮的命中率约为. 现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率,先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表明命中,5,6,7,8,9,0表示不命中,再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为 ( )
下列命题:①将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件. ②若事件A与B互为对立事件,则事件A与B为互斥事件. ③若事件A与B为互斥事件,则事件A与B互为对立事件. ④若事件A与B互为对立事件,则事件A+B为必然事件. 其中,真命题是 ( )
已知,满足约束条件,则的最小值为 ( )
现有60瓶矿泉水,编号从1到60,若用系统抽样的方法从中抽取6瓶进行检验,则所抽取的编号可能为 ( )