如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。(1)求证:CE⊥平面PAD;(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积
已知圆C的圆心与点关于直线对称.直线与圆C相交于两点,且,求圆C的方程.
如图,在正方体中,为底面的中心,是的中点,设是上的中点,求证:(1); (2)平面∥平面.
根据下列条件求直线方程 (1)过点(2,1)且倾斜角为的直线方程; (2)过点(-3,2)且在两坐标轴截距相等的直线方程.
已知定点A(0,1),B(0,-1),C(1,0).动点P满足:. (1)求动点P的轨迹方程,并说明方程表示的曲线类型; (2)当时,求的最大、最小值.
设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求: (Ⅰ)求实数b 的取值范围; (Ⅱ)求圆C 的方程;