如图所示,甲、乙两位同学在直跑道上练习4×100 m接力,他们在奔跑时有相同的最大速度.乙从静止开始全力奔跑需跑出20 m才能达到最大速度,这一过程可以看做是匀加速运动.现甲持棒以最大速度向乙奔来,乙在接力区伺机全力奔出.若要求乙接棒时达到奔跑速度最大值的90%,试求:(1)乙在接力区从静止跑出多远才接到棒?(2)乙应在距离甲多远时起跑?
如图,质量为m1="0.5" kg的小杯里盛有质量为m2="1" kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为r="1" m,小杯通过最高点的速度为v="4" m/s,g取10 m/s2,求:(1) 在最高点时,绳的拉力大小(2) 在最高点时杯底对水的压力大小(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?
如图,V形细杆AOB能绕其对称轴OO’转动,OO’沿竖直方向,V形杆的两臂与转轴间的夹角均为。两质量均为的小环,分别套在V形杆的两臂上,并用长为、能承受最大拉力的轻质细线连结。环与臂间的最大静摩擦力等于两者间弹力的0.2倍。当杆以角速度转动时,细线始终处于水平状态,取。](1)求杆转动角速度ω的最小值;(2)将杆的角速度从(1)问中求得的最小值开始缓慢增大,直到细线断裂,写出此过程中细线拉力随角速度变化的函数关系式。
如图所示,质量不计的光滑直杆AB的A端固定一个小球P,杆OB段套着小球Q,Q与轻质弹簧的一端相连,弹簧的另一端固定在O点,弹簧原长为L,劲度系数为k,两球的质量均为m,OA=d,小球半径忽略.现使在竖直平面内绕过O点的水平轴转动,若OB段足够长,弹簧形变始终处于弹性限度内。当球P转至最高点时,球P对杆的作用力为零,求此时弹簧的弹力。
一小球以初速度v0水平抛出,落地时速度为vt,阻力不计,求:(1)小球在空中飞行的时间(2)抛出点离地面的高度(3)小球的位移大小
在平直的公路上,汽车A以0.5m/s2的加速度启动做匀加速直线运动,并在30s后改做匀速运动(匀速运动的速度等于30s末时的速度)。正当A启动时,汽车B恰以10m/s的速度从A旁边匀速同向驶过。设A车启动时t=0:(1)在30s末,汽车A的速度多大?(2)试在下面的同一个坐标系中,画出A和B两辆车在0到50s内的速度 — 时间图象;(3)在20s末,两车之间的距离多大?(4) 经多长时间A追上B?