已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上。小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y)。由于记录失误,使得其中恰好有一个点既不在椭圆上C1上,也不在抛物线C2上。小明的记录如下:据此,可推断椭圆C1的方程为 .
设实数x,y满足则的取值范围是 .
如图,这是一个把k进掉数a(共有n位)化为十进制数b的程序框图,执行该程序框图,若输入的k,a,n分别为2,110011,6,则输出的b= .
设则不大于S的最大整数[S]等于
设椭圆E:的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心率是 .
若函数在上存在单调递增区间,则a的取值范围是 .