已知z、w为复数,(1+3i)z为实数,w=.
己知函数(1)求函数的最小正周期.(2)记△ABC的内角A、B、C的对边长分别为a、b、c,若,、b=1、c=,求a的值.
如图,设有双曲线,F1,F2是其两个焦点,点M在双曲线上.(1)若∠F1MF2=90°,求△F1MF2的面积.(2)若∠F1MF2=60°,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?(3)观察以上计算结果,你能看出随∠F1MF2的变化,△F1MF2的面积将怎样变化吗?试证明你的结论.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),已知过点P(-2,-4)的直线l的参数方程为:为参数),直线l与曲线C分别交于M,N两点.(1)写出曲线C和直线l的普通方程.(2)若|PM|,|MN|,|PN|成等比数列,求a的值.
如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.(1)求∠ADF的度数;(2)AB=AC,求AC∶BC.
已知{an}是正数组成的数列,a1=1,且点(,an+1)(n∈N*)在函数y=x2+1的图象上.(1)求数列{an}的通项公式;(2)若数列{bn}满足b1=1,bn+1=bn+,求证:bn·bn+2<.