若焦点在轴上的椭圆的离心率为,则等于( )
已知定义在[0,+∞)上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=﹣2x2+4x.设f(x)在[2n﹣2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn,则Sn=( )
已知双曲线C的方程为,其左、右焦点分别是F1、F2.已知点M坐标为(2,1),双曲线C上点 P(x0,y0)(x0>0,y0>0)满足,则=( )
函数f(x)=,若实数a满足f(f(a))=1,则实数a的所有取值的和为( )
已知中心在原点,焦点在坐标轴上的双曲线与圆x2+y2=17有公共点A(1,﹣4),且圆在A点的切线与双曲线的渐近线平行,则双曲线的离心率为( )
已知函数是[1,∞]上的增函数.当实数m取最大值时,若存在点Q,使得过Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q的坐标为( )