深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.(1)设第一次训练时取到的新球个数为,求的分布列和数学期望;(2)求第二次训练时恰好取到一个新球的概率.
已知定义在区间[0,2]上的两个函数f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+. (1)求函数f(x)的最小值. (2)对于∀x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.
已知函数f(x)=2x,g(x)=+2. (1)求函数g(x)的值域. (2)求满足方程f(x)-g(x)=0的x的值.
设函数f(x)=log3(9x)·log3(3x),≤x≤9. (1)若m=log3x,求m的取值范围. (2)求f(x)的最值,并给出最值时对应的x的值.
(14分)已知. (1)求的单调区间和极值; (2)是否存在,使得在的切线相同?若存在,求出及在处的切线;若不存在,请说明理由; (3)若不等式在恒成立,求的取值范围.
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上. (1)求椭圆C的方程; (2)过的直线与椭圆C相交于A,B两点,以为圆心为半径的圆与直线相切,求AB的面积.