某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别记录了6个抽查数据,获得重量数据的茎叶图如图4.(1)根据样品数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对较稳定;(2)若从乙车间6件样品中随机抽取两件,求所抽取的两件样品的重量之差不超过2克的概率.
已知函数(、为常数). (Ⅰ)若,解不等式; (Ⅱ)若,当时,恒成立,求的取值范围.
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,截面DAN交PC于M. (1)求PB与平面ABCD所成角的大小; (2)求证:PB⊥平面ADMN.
在正方体中,G是C1D1的中点,H是A1B1的中点 (1)求异面直线AH与BC1所成角的余弦值; (2)求证:BC1∥平面B1DG.
已知中的三个内角所对的边分别为,且满足,. (Ⅰ)求的值; (Ⅱ)求的面积.
(本小题满分12分)在一次商贸交易会上,一商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. (1)若抽奖规则是从一个装有5个红球和3个白球的袋中有放回地取出2个球,当两个球同色时则中奖,求中奖概率; (2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.