设不等式 { 0 ≤ x ≤ 2 0 ≤ y ≤ 2 表示的平面区域为 D ,在区域 D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )
若且满足,则的最小值是()
在△ABC中,∠A∶∠B∶∠C=1∶2∶3,CD⊥AB于D,AB=,则DB=()
在⊙O中,直径AB、CD互相垂直,BE切⊙O于B,且BE=BC,CE交AB于F,交⊙O于M,连结MO并延长,交⊙O于N,则下列结论中,正确的是() A.CF=FM B.OF=FB C.的度数是22.5° D.BC∥MN
极坐标方程表示的曲线为()
若点在以点为焦点的抛物线上,则等于()