(本小题满分12分) 现要围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元)(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
已知如图几何体,正方形和矩形所在平面互相垂 直,,为的中点,。 (Ⅰ)求证: ; (Ⅱ)求二面角的大小。
已知函数。 (Ⅰ)求的最小正周期; (Ⅱ)把的图像向右平移个单位后,在是增函数,当最小时,求的值
已知幂函数(∈N+)的图像关于y轴对称,且在(0,+∞)上是减函数,求满足的实数取值范围.
已知=,(∈ R)是R上的奇函数. (1)求的值; (2)求的反函数; (3)对任意的k∈(0, +∞)解不等式>.
若函数=的值域是R,且在(-∞,1-)上是减函数,求实数的取值范围.