(本小题满分12分) 现要围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元)(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
已知命题在[-1,1]上有解,命题q:只有一个实数x满足: (I)若的图象必定过两定点,试写出这两定点的坐标(只需填写出两点坐标即可); (II)若命题“p或q”为假命题,求实数a的取值范围.
(本小题满分14分) 某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低2元时,一星期多卖出24件. (I)将一个星期的商品销售利润表示成的函数; (II)如何定价才能使一个星期的商品销售利润最大?
(本小题满分12分) 如图,在三棱锥中,侧面 与侧面均为等边三角形,,为中点. (Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.
(本小题满分12分) 在中,已知,,. (Ⅰ)求的值; (Ⅱ)求的值.
(本小题满分10分)解不等式