如图,已知椭圆的长轴为,过点的直线与轴垂直,直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率(1)求椭圆的标准方程;(2)设是椭圆上异于、的任意一点,轴,为垂足,延长到点使得,连接并延长交直线于点,为的中点.试判断直线与以为直径的圆的位置关系.
已知(),函数,且的最小正周期为. (Ⅰ)求的值; (Ⅱ)求函数的单调递增区间.
如图:在中,为中点, ,,设 (Ⅰ)试用表示;(Ⅱ)试用表示.
我们知道在△ABC中有A+B+C=,已知B=,求sinA+sinC的取值范围。
已知函数的图象的一部分如图所示. (Ⅰ)求函数的解析式; (Ⅱ)当时,求函数的最值
如图,在△ABC中,设BC,CA, AB的长度分别为a,b,c,证明:a2=b2+c2-2bccosA