(本小题满分15分)已知函数(Ⅰ)求函数的极值;(Ⅱ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线∥,则称为弦的伴随切线。特别地,当,时,又称为的λ——伴随切线。(ⅰ)求证:曲线的任意一条弦均有伴随切线,并且伴随切线是唯一的;(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线 ,并证明你的结论; 若不存在 ,说明理由。
已知函数f(x)=logax+2x和g(x)=2loga(2x+t-2)+2x(a>0,a≠1,t∈R)的图象在x=2处的切线互相平行.(Ⅰ)求t的值;(Ⅱ)设F(x)=g(x)-f(x),当x∈[1,4]时,F(x)≥2恒成立,求a的取值范围.
已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间.
已知定义在R上的函数f(x)=x2(ax-3),其中a为常数.(Ⅰ)若x=1是函数f(x)的一个极值点,求a的值;(Ⅱ)若函数f(x)在区间(-1,0)上是增函数,求a的取值范围.
设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值.
已知 a n 是一个等差数列,且 a 2 = - 1 , a 5 = - 5 .
(Ⅰ)求 a n 的通项 a n
(Ⅱ)求 a n 前 n 项和 S n 的最大值.