三个求职者到某公司应聘,该公司为他们提供了A,B,C,D四个岗位,每人从中任选一个岗位。(1)求恰有两个岗位没有被选的概率;(2)设选择A岗位的人数为,求的分布列及数学期望。
(本题满分12分) 已知函数是实数集R上的奇函数,且在R上为增函数。 (Ⅰ)求的值; (Ⅱ)求在恒成立时的实数t的取值范围。
(本题满分12分) 已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率 (Ⅰ)求椭圆C的方程; (Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线:,是否存在实数m,使直线与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。
(本题满分12分) 已知数列的前 n项和为,满足,且. (Ⅰ)求,; (Ⅱ)若,求证:数列是等比数列。 (Ⅲ)若, 求数列的前n项和。
(本题满分12分) 如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。 (1)求证:CD⊥AE; (2)求证:PD⊥面ABE。
(本题满分12分) 为调查某工厂工人生产某种产品的能力,随机抽查了一些工人某天生产产品的数量,产品数量的分组区间为[45,55), [55,65), [65,75), [75,85), [85,95),由此得到频率分布直方图如图所示,保存中不慎丢失一些数据,但已知第一组 ([45,55) ]有4人; (Ⅰ)求被抽查的工人总人数n及图中所示m为多少; (Ⅱ)求这些工人中一天生产该产品数量在[55,75)之间的人数是多少。