三个求职者到某公司应聘,该公司为他们提供了A,B,C,D四个岗位,每人从中任选一个岗位。(1)求恰有两个岗位没有被选的概率;(2)设选择A岗位的人数为,求的分布列及数学期望。
(本小题满分12分,(1)小问5分,(2)小分7分.) 如图所示,正三棱柱的底面边长与侧棱长均为,为中点. (1)求证:∥平面; (2)求直线与平面所成的角的正弦值.
.(本小题满分13分) 已知函数在处取得极值,求的 单调区间.
(本小题满分13分,(1)小问6分,(2)小分7分.) 进行一次掷骰子放球游戏,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙 盒中放一球;若掷出4点或5点或6点,丙盒中放一球,共掷4次. (1)求丙盒中至少放3个球的概率; (2)记甲、乙两盒中所放球的总数为随机变量,求的分布列和数学期望.
(本小题满分13分) 设,函数满足,求在上的 最大值和最小值.
.已知函数 (1)求时的取值范围; (2)若且对任意成立; (ⅰ)求证是等比数列; (ⅱ)令,求证.