为了求函数,函数,轴围成的曲边三角形的面积,古人想出了两种方案求其近似解(如图):第一次将区间二等分,求出阴影部分矩形面积,记为;第二次将区间三等分,求出阴影部分矩形面积,记为;第三次将区间四等分,求出……依此类推,记方案一中,方案二中,其中1. 求2. 求的通项公式,并证明3. 求的通项公式,类比第②步,猜想的取值范围。并由此推出的值(只需直接写出的范围与的值,无须证明)参考公式:
甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女. (Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率; (Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
已知函数. (1)求f(x)的最大值和最小正周期; (2)若f()=,α是第二象限的角,求sin2α.
如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B和B′C′的中点. (Ⅰ)证明:MN∥平面A′ACC′; (Ⅱ)求三棱锥A′﹣MNC的体积. (椎体体积公式V=Sh,其中S为底面面积,h为高)
如图在正方体ABCD﹣A1B1C1D1中, (1)求证:平面AA1C1C⊥平面A1BD (2)求直线A1B与平面A1B1CD所成的角.
已知圆C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0, (1)求证:直线l恒过定点; (2)判断直线l被圆C截得的弦长何时最长,何时最短?并求截得的弦长最短时,求m的值以及最短长度.