设双曲线的两个焦点分别为、,离心率为2.(1)求双曲线的渐近线方程;(2)过点能否作出直线,使与双曲线交于、两点,且,若存在,求出直线方程,若不存在,说明理由.
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F. ⑴判断BE是否平分∠ABC,并说明理由; ⑵若AE=6,BE=8,求EF的长.
在直径是的半圆上有两点,设与的交点是. 求证:
已知圆(x+4)2+y2=25的圆心为M1,圆(x-4)2+y2=1的圆心为M2,一动圆与这两个圆都外切. ⑴求动圆圆心P的轨迹方程; ⑵若过点M2的直线与⑴中所求轨迹有两个交点A、B,求|AM1|·|BM1|的取值范围.
椭圆的中心在原点,焦点在x轴上,焦距为2,且经过点A ; (1)求满足条件的椭圆方程; (2)求该椭圆的顶点坐标,长轴长,短轴长,离心率.