在某次考试中共有12道选择题,每道选择题有4个选项,其中只有一个是正确的,评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”。某考生每道题给出一个答案,并已确定有9道题的答案是正确的,而其余题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意只能乱猜,试求出该考生;(1)选择题得60分的概率;(2)选择题所得分数的数学期望。
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,试求a的最值.
已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立,求实数x的取值范围.
已知实数a,b,c满足a+b+c=2,求a2+2b2+c2的最小值.
已知a1=1,a2=4,an+2=4an+1+an,bn=,n∈N+. (1)求b1,b2,b3的值. (2)设cn=bnbn+1,Sn为数列{cn}的前n项和,求证: Sn≥17n. (3)求证:|b2n-bn|<·.
已知f(x)=,n∈N*,试比较f()与的大小,并且说明理由.