定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列.对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.(Ⅰ)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求k的取值范围;(Ⅱ)已知数列的首项为2010,是数列的前n项和,且满足,证明是“三角形”数列;(Ⅲ)根据“保三角形函数”的定义,对函数,,和数列1,,,()提出一个正确的命题,并说明理由.
坐标系与参数方程已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线上求一点,使它到直线的距离最小,并求出该点坐标和最小距离.
几何证明选讲如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1);(2)AB2=BE•BD-AE•AC.
(本小题满分12分)已知函数(),其中.(1)当时,讨论函数的单调性;(2)若函数仅在处有极值,求的取值范围;(3)若对于任意的,不等式在上恒成立,求的取值范围.
(本小题满分12分)已知椭圆:的左、右焦点分别为离心率,点在且椭圆E上, (Ⅰ)求椭圆的方程; (Ⅱ)设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围.(Ⅲ)试用表示的面积,并求面积的最大值
(本小题满分12分)如图,已知平面,平面,△为等边三角形,,为的中点.(1) 求证:平面;(2) 求证:平面平面;(3) 求直线和平面所成角的正弦值.