一个容量为100的样本,其数据的分组与各组的参数如下:(0,10〕,12;(10,20〕,13;(20,30〕,15;(30,40〕,24;(40,50〕,16;(50,60〕,13;(60,70〕,7;则这样本数据落在(10,40〕上的频率为
若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,有下列命题: ①在内单调递增; ②和之间存在“隔离直线”,且的最小值为; ③和之间存在“隔离直线”,且的取值范围是; ④和之间存在唯一的“隔离直线”. 其中真命题的个数有()
中心在原点,对称轴为坐标轴的双曲线C的两条渐近线与圆:都相切,则双曲线C的离心率是()
函数的图象的大致形状是()
定义在上的函数满足:成立,且在上单调递增,设,则、、的大小关系是()
一个棱锥的三视图如图,则该棱锥的表面积为()