(本小题共13分)如图,矩形ABCD中,平面ABE,BE=BC,F为CE上的点,且平面ACE。(1)求证:平面BCE;(2)求证:AE//平面BFD。
极坐标与参数方程: 已知点P是曲线上一点,O为原点.若直线OP的倾斜角为,求点的直角坐标.
矩阵与变换: 已知a,b∈R,若所对应的变换把直线变换为自身,求实数,并求的逆矩阵.
已知函数.(1当 时, 与)在定义域上单调性相反,求的 的最小值。(2)当时,求证:存在,使的三个不同的实数解,且对任意且都有.
数列满足:,(≥3),记(≥3).(1)求证数列为等差数列,并求通项公式;(2)设,数列{}的前n项和为,求证:<<.
给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.