已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数). (Ⅰ)求椭圆的方程; (Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线与y轴交于点M.若,求直线的斜率.
已知椭圆的离心率为,过顶点的直线与椭圆相交于两点.(1)求椭圆的方程;(2)若点在椭圆上且满足,求直线的斜率的值.
如图所示,矩形中,平面,,为上的点,且平面(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积。
在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.(1)求an和bn;(2)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.
已知向量,,若函数.(1)求的最小正周期;(2)若,求的最大值及相应的值;(3)若,求的单调递减区间.
在直角坐标系xOy中,直线l的方程为x﹣y+4=0,曲线C的参数方程为(α为参数)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.