(1)计算 2(lg)2+lg·lg5+;(2)已知tan=, 求的值
某射手击中目标的概率为0.8,每次射击的结果相互独立,现射击10次,问他最有可能射中几次?
已知函数. (1)若在上的最大值为,求实数的值; (2)若对任意,都有恒成立,求实数的取值范围; (3)在(1)的条件下,设,对任意给定的正实数,曲线上是否存在两点、,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。
已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为. (Ⅰ)求椭圆C的标准方程; (Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.
已知函数. (1)证明函数的图像关于点对称; (2)若,求; (3)在(2)的条件下,若,为数列的前项和,若对一切都成立,试求实数的取值范围.
如图所示,在四面体中,,,两两互相垂直,且. (1)求证:平面平面; (2)求二面角的大小; (3)若直线与平面所成的角为,求线段的长度.