(本小题满分15分) 如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.
(1)求双曲线的标准方程; (2)设F1和F2是这双曲线的左、右焦点,点P在这双曲线上,且|PF1|·|PF2|=32,求 ∠F1PF2的大小
为2∶1,将逆时针方向转90°到QH, (1)求R点轨迹方程 (2)求|RH|的最大值
A,B恒有 (1)求弦AB中点M的轨迹方程 (2)以AP和PB为邻边作矩形AQBP,求点Q轨迹方程 (3)若x,y满足Q点轨迹方程,求的最值
,定点F(10,4),对于x轴上移动的点P(t,0)作一折线FPQ,使,若折线FPQ的PQ部分与正方形ABCD的边界有公共点, (1)求:B、D坐标;(2)求t的取值范围.