某种游戏中,黑、黄两个“电子狗”从棱和为1的正方体ABCD-A1B1C1D1的顶点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”,黑“电子狗”爬行的路线是AA1→A1D1→…,黄“电子狗”爬行的路线是AB→BB1→…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须异面直线(其中i是正整数).设黑“电子狗”爬完2012段、黄“电子狗”爬完2011段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是( )
已知数列的前项和,若是等比数列,则的值为( )
在△ABC中,若,则这个三角形一定是( )
.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设二次函数,对任意实数,有恒成立;数列满足.(1)求函数的解析式和值域;(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,并说明理由;(3)已知,是否存在非零整数,使得对任意,都有 恒成立,若存在,求之;若不存在,说明理由.
. (本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 设虚数满足为实常数,,为实数).(1) 求的值;(2) 当,求所有虚数的实部和;(3) 设虚数对应的向量为(为坐标原点),,如,求的取值范围.
.本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知圆. (1)设点是圆C上一点,求的取值范围;(2)如图,为圆C上一动点,点P在AM上,点N在CM上,且满足求的轨迹的内接矩形的最大面积.