.如图直角梯形OABC中,,SO=1,以OC、OA、OS分别为x轴、y轴、z轴建立直角坐标系O-xyz.(Ⅰ)求的余弦值;(Ⅱ)设①②设OA与平面SBC所成的角为,求。
(本小题满分12分) 在一次篮球练习课中,规定每人最多投篮5次,若投中2次就称为“通过”,若投中3次就称为“优秀”并停止投篮.已知甲每次投篮投中的概率是. (I)求甲恰好投篮3次就通过的概率; (II)设甲投篮投中的次数为,求随机变量的分布列及数学期望E.
(本小题满分12分) 已知△ABC的面积S满足, 且, 与的夹角为. (I) 求的取值范围;(II)求函数的最小值.
(本小题满分12分) 如图,在直四棱柱中,底面是梯形,且,,,是棱的中点. (1)求证:; (2)求点到平面的距离; (3)求二面角的大小.
已知向量 a ⇀ = sin θ , cos θ - 2 sin θ , b ⇀ = 1 , 2
(1)若 a ⇀ ∥ b ⇀ ,求 tan θ 的值; (2)若 a ⇀ = b ⇀ , 0 < θ < π ,求 θ 的值.
是以为焦点的椭圆上一点,且,求证:椭圆的离心率为.