(本小题满分14分)在周长为定值的中,已知,动点的运动轨迹为曲线G,且当动点运动时,有最小值.(1) 以所在直线为轴,线段的中垂线为轴建立直角坐标系,求曲线的方程;(2) 过点作圆的切线交曲线于,两点.将线段MN的长|MN|表示为的函数,并求|MN|的最大值.
已知函数f(x)=ax--3ln x,其中a为常数. (1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值; (2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围; (3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.
设定义在(0,+∞)上的函数f(x)=ax++b(a>0). (1)求f(x)的最小值; (2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a,b的值.
已知函数f(x)=m(x-1)2-2x+3+ln x,m≥1. (1)当m=时,求函数f(x)在区间[1,3]上的极小值; (2)求证:函数f(x)存在单调递减区间[a,b]; (3)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.
已知a∈R,函数f(x)=4x3-2ax+a. (1)求f(x)的单调区间; (2)证明:当0≤x≤1时,f(x)+|2-a|>0.
已知函数f(x)=-x3+ax2-4(a∈R). (1)若函数y=f(x)的图象在点P(1,f(1))处的切线的倾斜角为,求f(x)在[-1,1]上的最小值; (2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.