定义在R上的偶函数,满足,且在区间上为递增,则( )
若定义在[﹣2013,2013]上的函数f(x)满足:对于任意的x1,x2∈[﹣2013,2013],有f(x1+x2)=f(x1)+f(x2)﹣2012,且x>0时,有f(x)>2012,f(x)的最大、小值分别为M、N,则M+N的值为( )
下列四个说法: (1)函数f(x)>0在x>0时是增函数,x<0也是增函数,所以f(x)是增函数; (2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0; (3)y=x2﹣2|x|﹣3的递增区间为[1,+∞); (4)y=1+x和表示相等函数. 其中说法正确的个数是( )
偶函数f(x)(x∈R)满足:f(﹣4)=f(1)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式x3f(x)<0的解集为( )
已知函数f(x)是定义在R上的奇函数,若对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1)恒成立,则不等式f(1﹣x)<0的解集为( )
定义两种运算:a⊕b=,a⊗b=,则函数为( )