已知.(Ⅰ)求的值; (Ⅱ)求的值.
如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.(Ⅰ)求证:PB⊥DM;(Ⅱ)求点B到平面PAC的距离.
对某校高一年级学生参加社区服务次数进行统计,随机抽取了M名学生作为样本,得到这M名学生参加社区服务的次数,根据数据作出了频数的统计如下:
(Ⅰ)求出表中M,r,m,n的值;(Ⅱ)在所取样本中,从参加社区服务次数不少于20次的学生中任选2人,求至少有1人参加社区服务次数在区间[25,30)内的概率.
在中,分别为角的对边,的面积满足.(Ⅰ)求角A的值;(Ⅱ)若,设角B的大小为x,用x表示c并求的取值范围.
设数列的各项均为正数,其前n项的和为,对于任意正整数m,n, 恒成立. (Ⅰ)若=1,求及数列的通项公式; (Ⅱ)若,求证:数列是等比数列.
设函数;(Ⅰ)求证:函数在上单调递增;(Ⅱ)设,若直线PQ∥x轴,求P,Q两点间的最短距离.