设点,,若点在直线上,且,则点的坐标为( )
已知函数的导函数为偶函数,则 ( )
在中,若,则的形状一定是
已知函数的定义域为的值域为,则( )
在平面直角坐标系中,定义为两点,之间的“折线距离”.在这个定义下,给出下列命题:①到原点的“折线距离”等于的点的集合是一个正方形;②到原点的“折线距离”等于的点的集合是一个圆;③到两点的“折线距离”相等的点的轨迹方程是;④到两点的“折线距离”差的绝对值为的点的集合是两条平行线.其中正确的命题有( )
两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线相切,则a的取值范围是( )