由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:(1)指出这组数据的众数和中位数;(2)若视力测试结果不低于5.0,则称为“good sight”,若校医从“good sight”,中随机选取2人,试求抽到视力有5.2的学生的概率。
中,三个内角A、B、C所对的边分别为、、,若,. (Ⅰ)求角的大小; (Ⅱ)已知的面积为,求函数的最大值.
(本小题满分14分)已知数列{}是首项为,公比的等比数列. 设,数列{}满足. (Ⅰ)求数列{}的通项公式; (Ⅱ)求数列{}的前项和; (Ⅲ)若对一切正整数恒成立,求实数的取值范围.
(本小题满分12分)已知<<<, (Ⅰ)求的值. (Ⅱ)求.
(本小题满分12分)某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为,经测量米,米,米,. (Ⅰ)求的长度; (Ⅱ)若环境标志的底座每平方米造价为5000元,不考虑其他因素,小李、小王谁的设计使建造费用较低(请说明理由)?较低造价为多少?()
(本小题满分12分)设函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)若,求函数的最大值和最小值.