已知函数,,,,,,将它们分别写在六张卡片上,放在一个盒子中,(Ⅰ)现从盒子中任取两张卡片,将卡片上的函数相加得到一个新函数,求所得的函数是奇函数的概率;(Ⅱ)从盒子中任取两张卡片,求其中至少一张上为奇函数的概率
某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米. (1)分别写出用x表示y和S的函数关系式(写出函数定义域)怎样设计能使s取得最大值,最大值为多少?
如图,四边形与都是边长为a的正方形,点E是的中点, (1)求证:; (2)求证:平面 求体积与的比值
在数列中,,若函数在点处切线过点() (1)求证:数列为等比数列; 求数列的通项公式和前n项和公式.
若向量,其中,设函数,其周期为,且是它的一条对称轴。 (1)求的解析式; (2)当时,不等式恒成立,求实数a的取值范围。
已知函数. (1)求函数的单调递增区间; (2)设的内角的对边分别为a、b、c,若c=,求a,b的值