(本小题满分1 4分)已知m,t∈R,函数f (x) ="(x" - t)3+m.(I)当t =1时,(i)若f (1) =1,求函数f (x)的单调区间;(ii)若关于x的不等式f (x)≥x3—1在区间[1,2]上有解,求m的取值范围;(Ⅱ)已知曲线y= f (x)在其图象上的两点A(x1,f (x1)),B(x2,f (x2)))( x1≠x2)处的切线分别为l1、l2.若直线l1与l2平行,试探究点A与点B的关系,并证明你的结论.
已知椭圆:的离心率为,且过点. (Ⅰ)求椭圆的标准方程; (Ⅱ)垂直于坐标轴的直线与椭圆相交于、两点,若以为直径的圆经过坐标原点.证明:圆的半径为定值.
某大学为调查来自南方和北方的同龄大学生的身高差异,从2011级的年龄在18~19岁之间的大学生中随机抽取了来自南方和北方的大学生各10名,测量他们的身高,量出的身高如下:(单位:cm) 南方:158,170,166,169,180,175,171,176,162,163; 北方:183,173,169,163,179,171,157,175,178,166; (Ⅰ)根据抽测结果,画出茎叶图,并根据你画的茎叶图,对来自南方和北方的大学生的身高作比较,写出两个统计结论; (Ⅱ)若将样本频率视为总体的概率,现从来自南方的身高不低于170的大学生中随机抽取3名同学,求其中恰有两名同学的身高低于175的概率.
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2. (Ⅰ)求四棱锥P-ABCD的体积V; (Ⅱ)若F为PC的中点,求证PC⊥平面AEF;
阅读下面材料: 根据两角和与差的正弦公式,有------①------② 由①+② 得------③ 令有 代入③得 . (Ⅰ) 类比上述推理方法,根据两角和与差的余弦公式,证明:; (Ⅱ)若的三个内角满足,试判断的形状. (提示:如果需要,也可以直接利用阅读材料及(Ⅰ)中的结论)
已知关于x的不等式(其中). (Ⅰ)当a=4时,求不等式的解集; (Ⅱ)若不等式有解,求实数a的取值范围.