已知动点P到两定点距离之比为。⑴求动点P轨迹C的方程;⑵若过点N的直线被曲线C截得的弦长为,求直线的方程。
(本小题满分13分) 已知为的三内角,且其对边分别为若且 (Ⅰ)求角 (Ⅱ)若的面积为求
选答题(本小题满分10分)(请考生在第22、23、24三道题中任选一题做答,并用2B铅笔在答题卡上把所选题目的题号涂黑。注意所做题号必须与所涂题目的题号一致,并在答题卡指定区域答题。如果多做,则按所做的第一题计分。) 22.选修4-1:几何证明选讲 如图,已知是⊙的切线,为切点,是⊙的割线,与⊙交于两点,圆心在的内部,点是的中点。 (1)证明四点共圆; (2)求的大小。 23.选修4—4:坐标系与参数方程 已知直线经过点,倾斜角。 (1)写出直线的参数方程; (2)设与曲线相交于两点,求点到两点的距离之积。 24.选修4—5:不等式证明选讲 若不等式与不等式同解,而的解集为空集,求实数的取值范围。
已知函数 (1)若函数在上为增函数,求正实数的取值范围; (2)讨论函数的单调性; (3)当时,求证:对大于的任意正整数,都有。
(本小题满分12分) 在平面直角坐标系中,已知,若实数使得(为坐标原点) (1)求点的轨迹方程,并讨论点的轨迹类型; (2)当时,若过点的直线与(1)中点的轨迹交于不同的两点(在之间),试求与面积之比的取值范围。
(本小题满分12分) 如图,在直三棱柱中,,为的中点,且, (1)当时,求证:; (2)若为中点,当为何值时,异面直线 与所成的角的正弦值为。