为备战2012年伦敦奥运会,爾家篮球队分轮次迸行分项冬训.训练分为甲、乙两组,根据经验,在冬训期间甲、乙两组完成各项训练任务的概率分别为和P(P>0)假设每轮训练中两组都各有两项训练任务需完成,并且每项任务的完成与否互不影响.若在一轮冬训中,两组完成训练任务的项数相等且都不小于一项,则称甲、乙两组为“友好组”(I)若求甲、乙两组在完成一轮冬训中成为“友好组”的概率;(II)设在6轮冬训中,甲、乙两组成为“友好组”的次数为,当时,求P的取值范围.
(1)已知是正常数,,,求证:,指出等号成立的条件; (2)利用(1)的结论求函数()的最小值,指出取最小值时的值.
已知椭圆的中心在原点,焦点在轴的非负半轴上,点到短 轴端点的距离是4,椭圆上的点到焦点距离的最大值是6. (1)求椭圆的标准方程和离心率; (2)若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由.
已知. (1)当时,解不等式; (2)当时,恒成立,求实数的取值范围.
已知ΔABC的三边方程是AB:,BC: CA:, (1)求∠A的大小. (2)求BC边上的高所在的直线的方程.
已知椭圆方程为,它的一个顶点为,离心率. (1)求椭圆的方程; (2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,求△AOB面 积的最大值.