(本小题满分14分)已知椭圆的一个焦点是,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设经过点的直线交椭圆于两点,线段的垂直平分线交轴于点,求的取值范围.
已知,设命题函数在R上单调递增;命题不等式对恒成立。若为假,为真,求的取值范围.
如图,已知是椭圆上且位于第一象限的一点,是椭圆的右焦点,是椭圆的中心,是椭圆的上顶点,是直线(是椭圆的半焦距)与轴的交点,若,,试求椭圆的离心率的平方的值.
已知双曲线的两个焦点为,,是此双曲线上的一点,且,,求该双曲线的方程.
为了了解小学生的体能情况,抽取某校一个年级的部分学生进行一分钟的跳绳次数测试,将取得数据整理后,画出频率分布直方图(如下图),已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率约为多少.
在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和能被3整除的概率.