(本小题满分14分)已知椭圆的一个焦点是,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设经过点的直线交椭圆于两点,线段的垂直平分线交轴于点,求的取值范围.
已知椭圆的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为. (Ⅰ)+y2=1; (Ⅱ)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(),证明:为定值.
已知△ABC中,角A,B,C所对的边分别是a,b,c,且2(a2+b2﹣c2)=3ab; (1)求; (2)若c=2,求△ABC面积的最大值.
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3. (1)求数列{an}的通项公式; (2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
设函数f(x)=ax2+(b﹣2)x+3(a≠0) (1)若不等式f(x)>0的解集(﹣1,3).求a,b的值; (2)若f(1)=2,a>0,b>0求+的最小值.
已知命题p:“存在”,命题q:“曲线表示焦点在x轴上的椭圆”,命题s:“曲线表示双曲线” (1)若“p且q”是真命题,求m的取值范围; (2)若q是s的必要不充分条件,求t的取值范围.