在平面直角坐标系中,若为坐标原点,则、、三点在同一直线上的充要条件为存在唯一的实数,使得成立,此时称实数为“向量关于和的终点共线分解系数”.若已知、,且向量是直线的法向量,则“向量关于和的终点共线分解系数”为 .
过椭圆的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为______________
一个六棱柱的底面是正六边形,其侧棱垂直底面。已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,那么这个球的体积为 _________
已知{an}为等差数列,a3 + a8 = 22,a6 = 7,则a5 = ____________
某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.
将正 ∆ABC 分割成 n2 n ≥ 2 , n ∈ N* 个全等的小正三角形(图乙,图丙分别给出了 n=2,3 的情形),在每个三角形的顶点各放置一个数,使位于 ∆ABC 的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列.若顶点 A,B,C 处的三个数互不相同且和为1,记所有顶点上的数之和为 f n ,则有 f 2 =2 , f 3 = ,… , f n = .