. (本小题满分12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC; (2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.
设到定点的距离和它到直线距离的比是. (Ⅰ)求点的轨迹方程; (Ⅱ)为坐标原点,斜率为的直线过点,且与点的轨迹交于点,,若,求△的面积.
在梯形中,,,,,如图把沿翻折,使得平面平面. (Ⅰ)求证:平面; (Ⅱ)若点为线段中点,求点到平面的距离.
已知某校四个社团的学生人数分别为10,5,20,15.现为了了解社团活动开展情况,用分层抽样的方法从四个社团的学生当中随机抽取10名学生参加问卷调查. (Ⅰ)从四个社团中各抽取多少人? (Ⅱ)在社团所抽取的学生总数中,任取2个,求社团中各有1名学生的概率.
已知是一个单调递增的等差数列,且满足,,数列的前项和为. (Ⅰ)求数列的通项公式;(Ⅱ)证明数列是等比数列.
选修4—5: 不等式选讲. (Ⅰ)设函数.证明:; (Ⅱ)若实数满足,求证: