设是两条不同的直线,是两个不同的平面,则下列四个命题: ①若a⊥b,a⊥α,bα,则b∥α; ②若a∥α,a⊥β,则α⊥β;③若a⊥β,α⊥β,则a∥α或aα; ④若a⊥b,a⊥α,b⊥β,则α⊥β.其中正确命题的个数为
抛物线y2=2px(p>0)上一点M到焦点的距离是a(a>),则点M的横坐标是( )
抛物线y=ax2(a<0)的焦点坐标为( )
过抛物线y=ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于( )
已知抛物线y2=6x,定点A(2,3),F为焦点,P为抛物线上的动点,则|PF|+|PA|的最小值为( )
过圆锥曲线焦点的直线与此圆锥曲线交于P1、P2两点,以P1P2为直径的圆与此焦点对应的准线相切,则此圆锥曲线是( )