.选修4—4:坐标系与参数方程椭圆中心在原点,焦点在轴上。离心率为,点是椭圆上的一个动点,若的最大值为,求椭圆的标准方程.
已知全集,集合,,.(1)求,, ;(2)若,求的取值范围.
设函数,其中.(1)若,求在[1,4]上的最值;(2)若在定义域内既有极大值又有极小值,求实数的取值范围;
已知数列满足,前n项和为Sn,Sn=.(1)求证:是等比数列;(2)记,当时是否存在正整数m,都有?如果存在,求出m的值;如果不存在,请说明理由.
从标有1,2,3,…,7的7个小球中取出一个球,记下它上面的数字,放回后再取出一个球,记下它上面的数字,然后把两球上的数字相加,求取出两球上的数字之和大于11或者能被4整除的概率.
在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.(1)求证:平面DEC⊥平面BDE;(2)求二面角C—BE—D的余弦值.