(本小题满分14分)如图,在一个由矩形与正三角形组合而成的平面图形中,现将正三角形沿折成四棱锥,使在平面内的射影恰好在边上. (1)求证:平面⊥平面;(2)求直线与平面所成角的正弦值.
设命题:实数满足,其中;命题:实数满足(1)若,且且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.
已知△ABC中,.(I)求∠C的大小;(Ⅱ)设角A,B,C的对边依次为,若,且△ABC是锐角三角形,求的取值范围.
已知函数(1)求的值;(2)写出函数在上的单调区间和值域。
(本小题满分10分)选修4—5:不等式选讲设函数,(Ⅰ)若,解不等式;(Ⅱ)若函数有最小值,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)设直线与曲线相交于两点,求两点间的距离.