已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)求:⑴求以向量为一组邻边的平行四边形的面积S;⑵若向量分别与向量垂直,且||=,求向量的坐标。
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若,求在区间上的最大值; (III)设函数,(),试讨论函数与图象交点的个数
如图所示,在中,,,N在y轴上,且,点E在x轴上移动. (Ⅰ)求点M的轨迹方程; (Ⅱ)过点作互相垂直的两条直线,与点M的轨迹交于点A、B,与点M的轨迹交于点C、D,求的最小值.
如图,在四棱锥中,底面,,,,是的中点. (Ⅰ)证明:; (Ⅱ)证明:平面; (Ⅲ)求二面角的正切值
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示. (Ⅰ)分别求第3,4,5组的频率; (Ⅱ)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试. (1)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率; (2)学校决定在这6名学生中随机抽取2名学生接受考官D的面试,第4组中有名学生被考官D面试,求的分布列和数学期望
在△ABC中,角A,B,C所对边分别为a,b,c,且. (Ⅰ)求角A; (Ⅱ)若m,n,试求|mn|的最小值.