在△ABC中,分别是内角A , B , C所对的边,若, 则△ABC形状为 一定是锐角三角形 . 一定是钝角三角形 . 一定是直角三角形 . 可能是锐角三角形, 也可能是钝角三角形
在用数学归纳法证明时,在验证当n=1时,等式左边为()
已知n为正偶数,用数学归纳法证明时,若已假设n=k(k≥2)为偶数)时命题为真,则还需要用归纳假设再证n=()时等式成立.
用数学归纳法证明:1+2+22+…2n﹣1=2n﹣1(n∈N)的过程中,第二步假设当n=k时等式成立,则当n=k+1时应得到()
证明1++…+(n∈N*),假设n=k时成立,当n=k+1时,左端增加的项数是()
利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n﹣1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是()