已知抛物线y2=2px(p>0)的焦点为F,A,B,C为抛物线上三点。若,且。(1)求抛物线方程。(2)(文)若OA⊥OB,直线AB与x轴交于一点(m,0),求m。(2)(理)若以为AB为直径的圆经过坐标原点O,则求证直线经过一定点,并求出定点坐标。
下列4个命题: ①“如果,则、互为相反数”的逆命题 ②“如果,则”的否命题 ③在中,“”是“”的充分不必要条件 ④“函数为奇函数”的充要条件是“” 其中真命题的序号是_________.
设满足约束条件,若目标函数的最大值为8,则的最小值为________。
关于的一元二次方程没有实数根,则实数的取值范围是.
若,,且,则的最小值是.
下列命题中, ①命题“<” 的否定是“>”; ②是的充要条件; ③一个命题的逆命题为真,它的否命题也一定为真; ④“9<<15”是“方程表示椭圆”的充要条件. ⑤设是以、为焦点的双曲线一点,且,若的面积为,则双曲线的虚轴长为6; 其中真命题的是(将正确命题的序号填上)