甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从道备选题中一次性抽取道题独立作答,然后由乙回答剩余题,每人答对其中题就停止答题,即闯关成功.已知在道备选题中,甲能答对其中的道题,乙答对每道题的概率都是.(Ⅰ)求甲、乙至少有一人闯关成功的概率;(Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.
(本小题满分7分)选修4-4:坐标系与参数方程直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程,曲线C的参数方程为为参数),求曲线C截直线l所得的弦长
(本小题满分7分)选修4-2:矩阵与变换设是把坐标平面上的点的横坐标伸长到倍,纵坐标伸长到倍的伸压变换.(Ⅰ)求矩阵的特征值及相应的特征向量;(Ⅱ)求逆矩阵以及椭圆在的作用下的新曲线的方程.
(本小题满分14分)已知函数(1)求f(x)在[0,1]上的极值;(2)若对任意成立,求实数a的取值范围;(3)若关于x的方程在[0,2]上恰有两个不同的实根,求实数b的取值范围.
(本小题满分13分) 过椭圆内一点M(1,1)的弦AB (1)若点M恰为弦AB的中点,求直线AB的方程; (2)求过点M的弦的中点的轨迹方程。
(本小题满分13分) 数列 (I)求数列的通项公式; (II)若的最大值。