首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 选择题
  • 难度 中等
  • 浏览 247

设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).
记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若|S|,|T|分别为集合S,T的元素个
数,则下列结论不可能的是(  )

A.|S|=1且|T|=0 B.|S|=1且|T|=1
C.|S|=2且|T|=2 D.|S|=2且|T|=3
登录免费查看答案和解析

设a,b,c为实数,f(x)=(x+a)(x2+bx+c),