用反证法证明命题:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是 ( )A假设a、b、c都是偶数 B假设a、b、c都不是偶数C假设a、b、c至多有一个偶数 D假设a、b、c至多有两个偶数
已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则Cu(MN)=()
已知直线绕点按逆时针方向旋转后所得直线与圆相切,,则的最小值为()
已知函数有三个不同的实数根,则实数的取值范围是()
函数对任意满足,且时,则下列不等式一定成立的是( )
在中,内角的对边分别是若,则=( )