已知函数,(Ⅰ)求函数的最小值;(Ⅱ)已知,命题p:关于x的不等式对任意恒成立;命题:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数的取值范围.
如图,正三棱柱中,是的中点,. (Ⅰ)求证:平面; (Ⅱ)求点到平面的距离.
已知单调递增的等比数列满足:,且是,的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若,,求.
在锐角中,、、分别为角所对的边,且. (Ⅰ)确定角的大小; (Ⅱ)若=, 且的面积为 , 求的值.
已知. (Ⅰ)求的最小值; (Ⅱ)若存在,使不等式成立,求的取值范围; (Ⅲ)当时,证明:.
已知椭圆的长轴长是短轴长的两倍,焦距为. (Ⅰ)求椭圆的标准方程; (Ⅱ)设不过原点的直线与椭圆交于两点、,且直线、、的斜率依次成等比数列,求△面积的取值范围.